Ph.D. Qualifying Exam of Statistical Methods, September 2008

Source of	Sum of	df	Mean		
variation	square	df	square	F-value	P-value
А	36	1	36	57.60	< 0.001
В	20.25	1	20.25	32.40	< 0.001
C	12.25	1	12.25	19.60	0.002
AB	2.25	1	2.25	x	0.094
AC	0.25	1	0.25	0.40	0.545
BC	1	1	1	1.60	0.242
ABC	1	1	1	1.60	y
Error	5	z			
Total	78	15			

1. The following is the result of ANOVA table of a 2^3 factorial design:

- (i) How many replications does it has? (2%)
- (ii) What are the values of x, y, z, respectively? (3%)
- (iii) Fit an appropriate regression model using the factors which showed significant under 0.10 nominal. (Note: You should give the corresponding values of the parameters estimate. It can be done through the results in the above table.)(10%)
 - 2. Assume that X and ε are two independent random variables which have finite second moment. However, we can only observe (X, Y) in which $Y = \beta_0 + \beta_1 X + \varepsilon$ and both β_0 and β_1 are unknown. Consider the least square estimation to estimate β_1 based on the random sample (X_i, Y_i) i = 1, ..., n. Show that the estimator is an unbiased and consistent estimator of β_1 . Can we estimate β_0 without any external information? (Note: You should not assume $E(\varepsilon) = 0.$) (15%)
 - 3. Consider a 16-run 2^{9-5} fractional factorial experiment in nine factors with generators E = BD, F = BCD, G = AC, H = ACD, and J = AB.
- (i) Find the defining relation and the alias relationships in this design. (5%)
- (ii) What is the resolution of this design? (5%)
- (iii) What is the resulting design if it projects into four factors which is not a word in the defining relation? (5%)

4. Assume that the correct linear regression model is as following

$$Y = X_1\beta_1 + X_2\beta_2 + \varepsilon$$

where X_1 is a full rank $n \times p$ matrix, X_2 is an $n \times r$ matrix, and β_j (j = 1, 2) are the corresponding vector parameters. Let $\hat{\beta}_1$ be the least square estimator of β_1 by fitting the regression model

$$Y = X_1\beta_1 + \varepsilon$$

- (i) What is the expectation of $\hat{\beta}_1$? (10%)
- (ii) Give the condition in which $\hat{\beta}_1$ is an unbiased estimated of β_1 . (5%)
 - 5. Assume that $Y^*|X^{\sim}Poisson(\ln(X^{\beta}+1))$ and $X^{\sim}f(.)$ which takes value greater than 1. Let $Y = I(Y^* > 0)$.
- (i) Describe the corresponding logistic regression model in terms of (X, Y). (5%)
- (ii) Write down its corresponding likelihood function based on (X_i, Y_i) (i = 1, ..., n). (5%)
- (iii) Suppose that Y^* is observable, give the advantages and disadvantages of using (X, Y) to estimate β instead of (X, Y^*) . (5%)
 - 6. Explain thoroughly the following items:
 - (i) Forward selection, backward elimination and stepwise selection. (6%)
- (ii) Principal components analysis. (4%)
- (iii) Nonlinear regression. (4%)
- (iv) Response surface methodology and center composite design. (6%)
- (v) ANOVA and ANCOVA. (5%)