- 1. 本試卷共六大題,配分都寫在各題目裡。
- 1. Suppose that X_1, \ldots, X_n is a random sample from the distribution on the positive numbers with density $\theta^2 x e^{-\theta x}$.
 - (i) Calculate the expectation of $\frac{1}{X_1}$. (5%)
 - (ii) Determine a minimum variance unbiased estimator of θ . (15%) (Hint: you can consider the estimator to be the form $\frac{a}{\overline{X}}$, where \overline{X} is the sample mean of X_1, \ldots, X_n and a is a constant. If you consider this form, you still need to prove it is the minimum variance unbiased estimator)
- 2. Let $\{Y_n : n > 1\}$, $\{Z_n : n > 1\}$, and $\{W_n : n > 1\}$ be independent sequences (i.e. the three sequences are independent of each other) of random variables where: Y_1, Y_2, \ldots are independent and identically distributed with $E(Y_1) = 0$ and $Var(Y_1) = 1$; Z_1, Z_2, \ldots are independent with $E|Z_n| = n^2 \log(n)$ for all $n \ge 1$; and W_1, W_2, \ldots are independent Bernoulli random variables with $P(W_n = 1) = n^{-4} = 1 P(W_n = 0)$ for all $n \ge 1$.

Let $X_n = (1 - W_n)Y_n + W_nZ_n, n \ge 1.$

Determine the limiting distribution of $n^{-1/2} \sum_{k=1}^{n} X_k$ when $n \to \infty$. (20%)

3. Consider the parametric model

$$X \sim N(\theta, \theta^2), \theta > 0.$$

(i) Fine the most power α -level test of

$$H_0: \theta = \theta_0$$
 vesus $H_a: \theta = \theta_1$

where $\theta_1 > \theta_0$. (10%)

(ii) Does a uniformly most powerful α -level test of

$$H_0: \theta = \theta_0$$
 vesus $H_a: \theta > \theta_0$

exist? If yes, give the most powerful test; if not, give the reason why there is no such test. (10%)

- 4. Let X_1 and X_2 be two (absolutely) continuous independent random variables with common density function f and cumulative distribution function F. Let $Y = |F(X_1) - F(X_2)|$ and $Z = min(F(X_1), F(X_2))$.
 - Prove Y and Z have the same distribution. (10%)
- 5. (10%) Let $\{X_1, \ldots, X_n\}$ be a random sample from $N(\mu, \sigma^2)$. Let \bar{X} and S^2 be the sample mean and sample variance of X_1, \ldots, X_n , respectively. Prove \bar{X} and S^2 are independent. (Hint: You can consider using Basu's Theorem, but it is not necessary to use it). (10%)
- 6. (20%) Let X_1, \ldots, X_n be a sequence of random variables satisfying

$$X_i = \theta X_{i-1} + \epsilon_i, i = 1, 2, \dots, n,$$

where $X_0 = 0$ and ϵ_i are i.i.d. $N(0, \sigma^2)$. Please derive the likelihood ratio test for

$$H_0: \theta = 0 \qquad vesus \qquad H_a: \theta \neq 0$$

You only need to derive the test statistic.