注意事項:

- 1. 本試卷共九大題,1-4題每10分,5-9題每12分。
- 1. Suppose X_1, \dots, X_n are independent random variables, where for $i=1,\dots,n,$ X_i has $\Gamma(\alpha_i,\beta)$ distribution, $\alpha_i,\beta>0$. Let $T_i=\sum_{j=1}^i X_j, i=1,\dots,n$, and $Y_i=\frac{T_i}{T_{i+1}}, i=1,\dots,n-1$.
 - (i) Show that Y_1, T_2 are independent, and find their distributions.
 - (ii) Show that when α_i , $i = 1, \dots, n$ are known, T_n is a complete sufficient statistic for β .
 - (iii) Show that $\mathbb{Y}_{n-1} = (Y_1, \dots, Y_{n-1})$ is a ancillary statistic for β , and discuss whether Y_1, \dots, Y_{n-1}, T_n are independent, and find their joint distribution.
- 2. Let $X_n, n \ge 1$, have a negative binomial distribution $NB(n, \theta)$ starting from 0, where $0 < \theta < 1$.
 - (i) Find a such that $X_n/n \xrightarrow{P} a$.
 - (ii) Find the approximate value of $P(X_n \leq x), x \in R$, when n gets large.
- 3. In a chemical laboratory, the concentration levels of certain chemical of n kinds of liquid are measured. Each liquid is measured independently twice. Assume the accuracy of each measurement is the same. Then we have independent measurement samples $X_i, Y_i, i = 1, ..., n$, where X_i, Y_i have distribution $N(\mu_i, \sigma^2)$, with $\mu_i \in R$, and $\sigma^2 > 0$ being the unknown parameters.
 - (i) Find the maximum likelihood estimates $\hat{\mu}_i$, i = 1, ..., n, and $\hat{\sigma}^2$, of μ_i , i = 1, ..., n, and σ^2 , respectively.
 - (ii) Are $\hat{\mu}_i$, i = 1, ..., n, and $\hat{\sigma}^2$ consistent estimates? If they are, prove it; if they are not, explain the reason and find a consistent estimate of the corresponding parameter respectively.
- 4. Suppose that $(X_{i1}, X_{i2}), i = 1, ..., n$, are i.i.d. bivariate normal distribution with mean $\mu = (\mu_1, \mu_2)$, variances σ_1^2, σ_2^2 , and correlation ρ . Let $\tau^2 = \text{Var}(X_{i2}|X_{i1})$.
 - (i) Derive moment estimator (ME) of ρ and τ^2 , respectively.
 - (ii) Calculate the covariance matrix of $(X_{i1}^2, X_{i2}^2, X_{i1}X_{i2})$.
 - (iii) Find the limiting distributions of the MEs in (i).
- 5. Let X_1, \dots, X_n be a random sample from either $Unif(\theta, \theta + 1), \theta > 0$, distribution.
 - (i) Find a sufficient statistic for parameter θ , and explain if it is a minimal sufficient statistic.
 - (ii) Consider testing $H_0: \theta = 0$. For each of the following alternatives, find the UMP(uniformly most powerful) or MP(most powerful) test of size α .
 - (a) $H_1: \theta \geq 1$.
 - (b) $H_1: \theta = \theta_1$, where θ_1 is a fixed alternative between 0 and 1, $0 < \theta < 1$.
- 6. Suppose X_1, \ldots, X_n are independent $\mathcal{E}(\lambda)$, $\lambda > 0$, random variables. If we could not observe the values of X_1, \ldots, X_n , but the number N of $X_i, i = 1, \cdots, n$ less than or equal to a constant M, M > 0. i.e. $N = \sum_{i=1}^n I_{\{X_i \leq M\}}$. Let $p = P(X_1 \leq M) = 1 e^{-\lambda M}$,
 - (i) Find the maximum likelihood estimate (MLE) \hat{p} of p, and its corresponding distribution function.
 - (ii) Find the Cramér-Rao lower bound of p, and show that \hat{p} is also a UMVUE of p.
 - (iii) Find the MLE of λ .

- 7. You are given a coin, which you are going to test for fairness. Let the probability of a head be p, and consider testing $H_0: p=1/2$ against $H_1: p<1/2$. You toss the coin until you observe the third head. Let X denote the number of tosses.
 - (i) Construct the UMP (uniformly most powerful) test for the hypothesis.
 - (ii) If you observe the third head occurs on the 12th toss, do you reject H_0 in a test of size $\alpha=0.05$?
- 8. Let X_1, \ldots, X_n be i.i.d. Poisson(λ), and let \overline{X}_n, S_n^2 denote the sample mean and variance, respectively.
 - (i) Prove that \overline{X}_n is the best unbiased estimator of λ (under the quadratic loss), without using the Cramer-Rao Theorem.
 - (ii) Prove that

$$E(S_n^2|\overline{X}_n) = \overline{X}_n$$

and use it to show that

$$\operatorname{Var}(S_n^2) > \operatorname{Var}(\overline{X}_n).$$

- (iii) Using completeness, can a general theorem be formulated for which the identity in part (ii) is a special case?
- 9. Let X_1, \dots, X_n be a random sample with the p.d.f of the common distribution as

$$f(x|\theta) = \frac{(1+\theta x^2)}{\sqrt{2\pi}(1+\theta)}e^{-x^2/2}, -\infty < x < \infty, \ \theta > 0.$$

- (i) Find $E(X_1)$ and $Var(X_1)$.
- (ii) Find the maximum likelihood estimate of θ .
- (iii) Find a "good" large sample testing statistic for testing $H_0: \theta = 0$, v.s. $H_1: \theta > 0$.