編號:_____

問題	1:10分	2:10分	3: 10分	4:10分	5:10分	總分:100分
得分						
問題	6:10分	7:10分	8:10分	9:10分	10:10分	
得分						

1. Let X and Y be random variables with finite means. Find a function $g^*(X)$ such that

$$\min_{g(X)} E[(Y - g(X))^2] = E[(Y - g^*(X))^2],$$

where g(x) ranges over all functions.

解答:

$$E[Y - g(X)]^{2} = E[(Y - E[Y|X]) + (E[Y|X] - g(X))]^{2}$$

= $E[Y - E[Y|X]]^{2} + E[E[Y|X] - g(X)]^{2}$
+ $2E[(Y - E[Y|X])(E[Y|X] - g(X))]$

The cross term can be shown to be zero by iterating the expectation. Thus

$$E[Y - g(X)]^{2} = E[Y - E[Y|X]]^{2} + E[E[Y|X] - g(X)]^{2}$$

$$\geq E[Y - E[Y|X]]^{2}, \text{ for all } g(\cdot).$$

The choice $g^*(X) = E[Y|X]$ will give equality.

2. Suppose X and Y are independent N(0, 1) random variables. Find $P(X^2 + Y^2 < 1)$.

解答: Note that $X^2 + Y^2 \sim \chi_2^2$. Thus $P(X^2 + Y^2 < 1) = \int_0^1 \frac{e^{-x/2}}{2} \, \mathrm{d}x = 1 - \frac{1}{\sqrt{e}} = 0.3935.$

- 3. Suppose X_1, X_2, \ldots are jointly continuous and independent, each distributed with marginal pdf f(x), where each X_i represents annual rainfall at a given location.
 - (a) Find the distribution of the number of years until the first year's rainfall, X_1 , is exceeded for the first time.
 - (b) Show that the mean number of years until X_1 is exceeded for the first is infinite.

解答:

(a) Let N denote the number of years until the first year's rainfall, X_1 , is exceeded for the first time. Then, for $n \ge 2$,

$$P(N = n - 1) = \int_0^\infty P(X_1 = x, X_2 \le x, \dots, X_{n-1} \le x, X_n > x | X_1 = x) f(x) dx$$

=
$$\int_0^\infty F^{n-2}(x)(1 - F(x))f(x) dx \qquad (u = F(x))$$

=
$$\int_0^1 u^{n-2}(1 - u) du$$

=
$$\left(\frac{1}{n-1} - \frac{1}{n}\right)$$

or equivalently,

$$P(N \ge n-1) = \int_0^\infty P(X_1 = x, X_2 \le x, \dots, X_{n-1} \le x | X_1 = x) f(x) dx$$

=
$$\int_0^\infty F^{n-2}(x) f(x) dx \qquad (u = F(x))$$

=
$$\int_0^1 u^{n-2} du$$

=
$$\frac{1}{n-1}$$

- (b) $E[N] = \sum_{n=2}^{\infty} P(N \ge n-1) = \sum_{n=2}^{\infty} \frac{1}{n-1} = \infty$
- 4. What is the probability that the larger of two continuous iid random variables will exceed the population median? Generalize this result to sample of size n.
 - 解答: Let m denote the median. Then, for general n we have

$$P(\max(X_1, \dots, X_n) > m) = 1 - P(X_i \le m \text{ for } i = 1, 2, \dots, n)$$
$$= 1 - P(X_1 \le m)^n = 1 - \left(\frac{1}{2}\right)^n.$$

5. Let $U_i, i = 1, 2, ...$, be independent uniform(0, 1) random variables, and let X have distribution

$$P(X = x) = \frac{c}{x!}, \quad x = 1, 2, 3, \dots,$$

where c = 1/(e - 1). Find the distribution of

$$Z = \min\{U_1, \ldots, U_X\}.$$

解答:

$$P(Z > z) = \sum_{x=1}^{\infty} P(Z > z|x) P(X = x) = \sum_{x=1}^{\infty} P(U_1 > z, \dots, U_x > z|x) P(X = x)$$

= $\sum_{x=1}^{\infty} \prod_{i=1}^{x} P(U_i > z) P(X = x)$ (by independence of the U_i 's)
= $\sum_{x=1}^{\infty} P(U_i > z)^x P(X = x) = \sum_{x=1}^{\infty} (1 - z)^x \frac{1}{(e - 1)x!}$
= $\frac{1}{(e - 1)} \sum_{x=1}^{\infty} \frac{(1 - z)^x}{x!} = \frac{e^{1 - z} - 1}{e - 1}, \quad 0 < z < 1.$

6. Let X_1, \ldots, X_n be independent random variables with densities

$$f_{X_i}(x|\sigma) = \begin{cases} e^{i\theta - x} & \text{if } x \ge i\theta, \\ 0 & \text{if } x < i\theta. \end{cases}$$

Prove that $T = \min_i (X_i/i)$ is a sufficient statistic for θ .

解答: By the Factorization Theorem, $T(X) = \min_i(X_i/i)$ is sufficient because we can write the joint pdf of X_1, \ldots, X_n as

$$f(x_1,\ldots,x_n|\theta) = \prod_{i=1}^n e^{i\theta - x_i} I_{(i\theta,+\infty)}(x_i) = \underbrace{e^{\theta \sum_{i=1}^n i} I_{(\theta,+\infty)}(T(x))}_{g(T(x)|\theta)} \cdot \underbrace{e^{-\sum x_i}}_{h(x)}.$$

Notice, we use the fact that i > 0, and the fact that all $x_i s > i\theta$ if and only if $\min(X_i/i) > \theta$.

7. Let X_1, \ldots, X_n be a sample from the inverse Gaussian pdf,

$$f(x|\mu,\lambda) = \left(\frac{\lambda}{2\pi x^3}\right)^{1/2} \exp\{-\lambda(x-\mu)^2/(2\mu^2 x)\}, \quad x > 0.$$

Find the MLEs of μ and λ .

解答: The likelihood is

$$L(\mu,\lambda|x) = \frac{\lambda^{n/2}}{(2\pi)^n \prod_i x_i} \exp\left\{-\frac{\lambda}{2} \sum_i \frac{(x_i - \mu)^2}{\mu^2 x_i}\right\}.$$

For fixed λ , maximizing with respect to μ is equivalent to minimizing the sum in the exponential.

$$\frac{d}{d\mu}\sum_{i}\frac{(x_i-\mu)^2}{\mu^2 x_i} = \frac{d}{d\mu}\sum_{i}\frac{((x_i/\mu)-1)^2}{x_i} = -\sum_{i}\frac{2((x_i/\mu)-1)}{x_i}\frac{x_i}{\mu^2}.$$

Setting this equal to zero is equivalent to setting

$$\sum_{i} \left(\frac{x_i}{\mu} - 1 \right) = 0,$$

and solving for μ yields $\hat{\mu}_n = \bar{x}$. Plugging in this $\hat{\mu}_n$ and maximizing with respect to λ amounts to maximizing an expression of the form $\lambda^{n/2}e^{-\lambda b}$. Simple calculus yields

$$\hat{\lambda}_n = \frac{n}{2b}$$
 where $b = \sum_i \frac{(x_i - \bar{x})^2}{2\bar{x}^2 x_i}$

Finally,

$$2b = \sum_{i} \frac{x_i}{\bar{x}^2} - 2\sum_{i} \frac{1}{x_i} + \sum_{i} \frac{1}{x_i} = -\frac{n}{\bar{x}} + \sum_{i} \frac{1}{x_i} = \sum_{i} \left(\frac{1}{x_i} - \frac{1}{\bar{x}}\right).$$

8. Let X_1, \ldots, X_n be a random sample from a population with pdf

$$f(x|\theta) = \frac{1}{2\theta}, \quad -\theta < x < \theta, \ \theta > 0$$

Find, if one exists, a best unbiased estimator of θ .

解答: To find a best unbiased estimator of θ , first find a complete sufficient statistic. The joint pdf is

$$f(x|\theta) = \left(\frac{1}{2\theta}\right)^n \prod_i I_{(-\theta,\theta)}(x_i) = \left(\frac{1}{2\theta}\right)^n I_{[0,\theta)}(\max_i |x_i|).$$

By the Factorization theorem, $\max_i |X_i|$ is a sufficient statistic. To check that it is a complete sufficient statistic, let $Y = \max_i |X_i|$. Note that the pdf of Y is $f_Y(y) = ny^{n-1}/\theta^n$, $0 < y < \theta$. Suppose g(y) is a function such that

$$E[g(Y)] = \int_0^\theta \frac{ny^{n-1}}{\theta^n} g(y) \, \mathrm{d}y = 0, \quad \text{for all } \theta$$

Talking derivatives shows that $\theta^{n-1}g(\theta) = 0$, for all θ . So $g(\theta) = 0$, for all θ , and $Y = \max_i |X_i|$ is a complete sufficient statistic. Now

$$E[Y] = \int_0^\theta y \frac{ny^{n-1}}{\theta^n} \, \mathrm{d}y = \frac{n}{n+1}\theta \quad \Rightarrow \quad E\left[\frac{n+1}{n}Y\right] = \theta.$$

Therefore $\frac{n+1}{n} \max_i |X_i|$ is a best unbiased estimator for θ because it is a function of a complete sufficient statistic.

9. Show that for a random sample X_1, \ldots, X_n from a $N(0, \sigma^2)$ population, the most

powerful test of $H_0: \sigma = \sigma_0$ versus $H_1: \sigma = \sigma_1$, is given by

$$\phi\left(\sum X_i^2\right) = \begin{cases} 1 & \text{if } \sum X_i^2 > c, \\ 0 & \text{if } \sum X_i^2 \le c. \end{cases}$$

For a given value of α , the size of the Type I Error, show how the value of c is explicitly determined.

解答: From the Neyman-Pearson lemma the UMP test rejects H_0 if

$$\frac{f(x|\sigma_1)}{f(x|\sigma_0)} = \frac{(2\pi\sigma_1^2)^{-n/2}e^{-\sum_i x_i^2/(2\sigma_1^2)}}{(2\pi\sigma_0^2)^{-n/2}e^{-\sum_i x_i^2/(2\sigma_0^2)}} = \left(\frac{\sigma_0}{\sigma_1}\right)^n \exp\left\{\frac{1}{2}\sum_i x_i^2\left(\frac{1}{\sigma_0^2} - \frac{1}{\sigma_1^2}\right)\right\} > k$$

for some $k \ge 0$. After some algebra, this is equivalent to rejecting if

$$\sum_{i} x_i^2 > \frac{2\log(k(\sigma_1/\sigma_0)^n)}{\left(\frac{1}{\sigma_0^2} - \frac{1}{\sigma_1^2}\right)} = c \quad \left(\text{because } \frac{1}{\sigma_0^2} - \frac{1}{\sigma_1^2} > 0\right).$$

This is the UMP test of size α , where $\alpha = P_{\sigma_0}(\sum_i X_i^2 > c)$. To determine c to obtain a specified α , use the fact that $\sum_i X_i^2 / \sigma_0^2 \sim \chi_n^2$. Thus

$$\alpha = P_{\sigma_0} \left(\sum_i X_i^2 / \sigma_0^2 > c / \sigma_0^2 \right) = P(\chi_n^2 > c / \sigma_0^2),$$

so we must have $c/\sigma_0^2 = \chi_{n,\alpha}^2$, which means $c = \sigma_0^2 \chi_{n,\alpha}^2$.

10. If X_1, \ldots, X_n are iid from a location pdf $f(x - \theta)$, show that the confidence set

$$C(x_1,\ldots,x_n) = \{\theta : \bar{x} - k_1 \le \theta \le \bar{x} + k_2\},\$$

where k_1 and k_2 are constants, has constant coverage probability.

解答:

$$P_{\theta}(\theta \in C(X_1, \dots, X_n)) = P_{\theta}(\bar{X} - k_1 \le \theta \le \bar{X} + k_2)$$
$$= P_{\theta}(-k_2 \le \bar{X} - \theta \le k_1)$$
$$= P_{\theta}\left(-k_2 \le \sum Z_i/n \le k_1\right)$$

where $Z_i = X_i - \theta$, i = 1, ..., n. Since this is a location family, for any θ , Z_1, \ldots, Z_n are iid with pdf f(z), i. e., the Z_i s are pivots. So the last probability does not depend on θ .