編號:

200 MC						
問題	1: 10分	2: 10分	3: 10分	4: 10分	5: 10分	總分: 100分
得分						
			- 10.		10.10	
	6: 10分	7: 10分	8: 10分	9: 10分	10: 10分	
得分						

1. Let $M_X(t)$ be the moment generating function of X, and define $S(t) = \log(M_X(t))$. Show that

$$\frac{d}{dt}S(t)\Big|_{t=0} = \mathbb{E}X$$
 and $\frac{d^2}{dt^2}S(t)\Big|_{t=0} = \text{Var }X.$

2. Let X and Y be independent n(0,1) random variables, and define a new random variable Z by

$$Z = \left\{ \begin{array}{ll} X & \text{if } XY > 0 \\ -X & \text{if } XY < 0. \end{array} \right.$$

- (a) Show that Z has a normal distribution.
- (b) Show that the joint distribution of Z and Y is not bivariate normal. (Hint: Show that Z and Y always have the same sign.)

3. Let $X_{(1)} \leq X_{(2)} \leq \cdots \leq X_{(n)}$ be the ordered values of n independent uniform (0,1) random variables. Prove that for $1 \leq k \leq n+1$,

$$P\{X_{(k)} - X_{(k-1)} > t\} = (1-t)^n$$

where $X_{(0)} \equiv 0$, $X_{(n+1)} \equiv t$.

4. Let X_1, \ldots, X_n be a random sample from a population with pdf

$$f_X(x) = \left\{ egin{array}{ll} 1/ heta & 0 < x < heta \\ 0 & ext{otherwise.} \end{array}
ight.$$

Let $X_{(1)} < \cdots < X_{(n)}$ be the order statistics. Show that $X_{(1)}/X_{(n)}$ and $X_{(n)}$ are independent random variables.

5. Let X_1, \ldots, X_n be iid $n(\mu, \sigma^2)$. Find the best unbiased estimator of σ^p , where p is a known positive constant, not necessarily an integer.

6. Let X be an observation from the pdf

$$f(x|\theta) = \left(\frac{\theta}{2}\right)^{|x|} (1-\theta)^{1-|x|}, \quad x = -1, 0, 1; \quad 0 \le \theta \le 1.$$

- (a) Find the MLE of θ.
- (b) Define the estimator T(X) by

$$T(X) = \begin{cases} 2 & \text{if } x = 1 \\ 0 & \text{otherwise.} \end{cases}$$

Show that T(X) is an unbiased estimator of θ .

7. Let X be one observation from a $Cauchy(\theta)$ distribution. Show that the test

$$\phi(x) = \begin{cases} 1 & \text{if } 1 < x < 3 \\ 0 & \text{otherwise} \end{cases}$$

is most powerful of its size for testing $H_0: \theta = 0$ versus $H_1: \theta = 1$. Calculate the Type I and Type II Error probabilities.

- Let X₁,..., X_n be iid observations from a beta(θ, 1) pdf and assume that θ has a gamma(r, λ) prior pdf. Find a 1 α Bayes credible set for θ.
- Suppose that X₁,..., X_n are iid Poisson(λ). Find the best unbiased estimator of e^{-λ}, the probability that X = 0.
- 10. A random sample X_1, \dots, X_n is drawn from a population with pdf

$$f(x|\theta) = \frac{1}{2}(1 + \theta x), \quad -1 < x < 1, \quad -1 < \theta < 1.$$

Find a consistent estimator of θ and show that it is consistent.