Real and Complex Analysis

Ph.D. Qualifying Examination September, 2009

Do all the problems below in detail. Each problem carries 10%. Here m denotes the Lebesgue measure.

- (1) Are all real continuous functions on R Lebesgue measurable?
- (2) Let g be integrable over \mathbf{R} and let $\{f_n\}$ be a sequence of measurable functions such that $|f_n| \leq g$ and $f_n \to f$ on \mathbf{R} . Prove or disprove: $f_n \to f$ in L^1 , i.e., $\int_{\mathbf{R}} |f_n f| dm \to 0$.
- (3) Suppose that f is a bounded nonnegative measurable function on \mathbf{R} . Let $\mu(A) = \int_A f(x) \, dm(x)$ for each measurable $A \subset \mathbf{R}$. Is μ absolutely continuous with respect to m?
- (4) Let $(\mathbf{X}, \mathcal{F}, \mu)$ be a finite measure space. Give and justify the inclusion relationship between $L^1(\mu)$ and $L^2(\mu)$.
- (5) State the Fubini theorem.
- (6) Let $f(z) = \bar{z}^2/z$ for $z \neq 0$, and f(0) = 0. Find f'(z) if it exists, and indicate where f is analytic.
- (7) Let $p(z) = (z z_1)(z z_2) \cdots (z z_n)$, where z_1, z_2, \ldots, z_n are distinct complex numbers. Evaluate $\oint_C \frac{1}{p(z)} dz$, where C is the circle |z| = R with $\max\{|z_1|, |z_2|, \ldots, |z_n|\} < R$. The integral is evaluated in the counterclockwise direction.
- (8) Find the radius of convergence for $\sum_{n=1}^{\infty} n^2 3^n (z-i)^{n-1}$. Also, find the sum for those z inside the circle of convergence.
- (9) Liouville's Theorem says that a bounded entire function is constant. Is it true that if an entire function has either a bounded real part or a bounded imaginary part, then it is constant?
- (10) Let f be harmonic in a simply connected open region Ω in ${\bf C}$. Are all its derivatives harmonic therein also?