National Sun Yat-sen University 2018 Real Analysis Ph.D. Qualifying Exam

1. (15 %) Let (X, \mathcal{A}, μ) be a measure space. Show that for any $A, B \in \mathcal{A}$, we have the equality:

$$\mu(A \cup B) + \mu(A \cap B) = \mu(A) + \mu(B).$$

2. (15 %) Let f be a function defined and bounded in Q = {(x,t)|0 ≤ x ≤ 1, 0 ≤ t ≤ 1}. Suppose that (1) f(·,t) is a measurable function of x for each t.
(2) the partial derivative ∂f/∂t(x,t) exists for each (x,t) ∈ Q
(3) ∂f/∂t(x,t) is bounded in Q. Show that

$$\frac{d}{dt}\int_0^1 f(x,t)dx = \int_0^1 \frac{\partial f}{\partial t}(x,t)dx$$

- 3. (15 %) Let f be a non-negative real-valued Lebesgue measurable on \mathbb{R} . Show that if $\sum_{n=1}^{\infty} f(x+n)$ is integrable on \mathbb{R} , then f = 0 a.e. on \mathbb{R} .
- 4. (15 %) Let g be a non-negative integrable function and $\{f_n\}$ be a sequence of integrable functions such that $|f_n| \leq g$ a.e. for all n. Show that if $f_n \to f$ in measure μ then $\lim_{n\to\infty} \int |f_n f| d\mu = 0$.
- 5. (15 %) Let (X, \mathcal{A}, μ) be a measure space and f be an integrable function. Prove that for every $\epsilon > 0$ there is $E \in \Sigma$ such that $\mu(E) < +\infty$ and $\int_{X \setminus E} |f| < \epsilon$.
- 6. (a) (5 %) State Lebesgue Dominated Convergence Theorem
 - (b) (10 %) Show that the Lebesgue Dominated Convergence Theorem holds if <u>a.e. convergence</u> is replaced by convergence in measure.
- 7. (10 %) Let f be a integrable function in $(-\infty, \infty)$. Evaluate

$$\lim_{n \to \infty} \int_{-\infty}^{\infty} f(x-n) \left(\frac{x}{1+|x|}\right) dx$$