Department of Applied Mathematics, National Sun Yat-sen University Ph.D. Program Qualifying Exam Real Analysis, Fall 2017

Answer all of the following questions. (20 points for each question)

- 1. Let $\{f_n\}$ be a sequence of (Lebesgue) measurable functions defined on a (Lebesgue) measurable set $X \subset \mathbb{R}$ with finite measure, i.e. $m(X) < \infty$. If $|f_n(x)| \leq M_x < +\infty$ for all n and for all $x \in X$, show that given any $\epsilon > 0$, there is a closed set $F \subset X$ and a finite number M such that $m(X \setminus F) < \epsilon$ and $|f_n(x)| \leq M$ for all n and all $x \in F$.
- 2. Suppose that $f:[0,1]\to\mathbb{R}$ is Lebesgue integrable and satisfies

$$\int_0^1 f(x)x^n \ dx = 0$$

for all $n \in \mathbb{N} \cup \{0\}$. Show that f = 0 a.e. on [0, 1].

3. Suppose that f is a positive function in $L^p((0,\infty),dx)$, where p>1, and let

$$F(x) = \int_0^x f(t) dt, \quad x \in [0, \infty).$$

Show that

$$F(x) \in o(x^{1/q})$$

as $x \to 0^+$ and $x \to +\infty$, where 1/p + 1/q = 1.

4. If $f \in L^2(0, 2\pi)$, show that

$$\lim_{n \to \infty} \int_0^{2\pi} f(x) \cos(nx) \ dx = 0.$$

5. Let p > 1. Show that if $f_n \to f$ in L^p , then $f_n \to f$ in measure.

End of Paper