Real Analysis

Ph.D. Qualifying Examination

Department of Applied Mathematics, National Sun Yat-sen University

February 21th, 2013

• Time: 1:00 p.m. \sim 5:00 p.m.

- Answer all the problems below in detail. Here m(A) denotes the Lebesgue measure of A.
 - 1. Prove or disprove that if $f : \mathbb{R} \to \mathbb{R}$ is a differentiable function, then the derivative f' of f is a Lebesgue measurable function. (7%)
 - 2. Let φ be a convex function on $(-\infty, \infty)$ and f an integrable function on [0, 1]. Show that

$$\int_{[0,1]} \varphi(f(t))dt \ge \varphi\left(\int_{[0,1]} f(t)dt\right). \tag{8\%}$$

- 3. Let f be nonnegative and measurable on a measurable subset E of \mathbb{R} . Show that $\int_E f = 0$ if and only if f = 0 a.e. on E. (10%)
- 4. (a) State and prove the Fatou's Lemma. (10%)
 - (b) Give an example to show that we may have strict inequality in Fatou's Lemma. (5%)
- 5. Let f be an integrable function on a measurable set X. Show that for each $\varepsilon > 0$, there is a $\delta > 0$ (depending on ε) such that $\left|\int_{E} f\right| < \varepsilon$ holds for any measurable subset E of X with $m(E) < \delta$. (15%)
- 6. Let f be a bounded measurable function on [0,1]. Show that $\lim_{p\to\infty} \|f\|_p = \|f\|_{\infty}$. (10%)
- 7. Suppose that $\{f_n\}$ is a sequence of measurable functions that converge to a real-valued function f almost everywhere on a measurable set E of finite measure. Prove that for any given $\varepsilon > 0$, there is a closed subset F of E such that $m(E \setminus F) < \varepsilon$ and $\{f_n\}$ converges uniformly to f on F. (15%)
- 8. (a) Let $x, y \ge 0$ and $\alpha, \beta > 0$ with $\alpha + \beta = 1$. Show that $x^{\alpha}y^{\beta} \le \alpha x + \beta y$. (10%)
 - (b) State and prove the Hölder's inequality by using (a). (10%).

- End of Question Paper -