REAL ANALYSIS

Ph.D. Qualifying Examination National Sun Yat-sen University September 13, 2012

Do all the problems below in detail. Here m denotes the Lebesgue measure.

- (1) Let $\{f_n\}$ be a sequence of real functions on **R** which converges to f in measure (Lebesgue measure). Does it converge to f in $L^1(\mathbf{R}, m)$? (10%)
- (2) Let $\{f_n\}$ be a sequence of real functions in $L^p(\mathbf{R}, m)$, $1 \le p < \infty$, which converges a.e. to $f \in L^p(\mathbf{R}, m)$.
 - (a) Show that if $f_n \to f$ in $L^p(\mathbf{R}, m)$ then $||f_n||_p \to ||f||_p$. (5%)
 - (b) Show that if $||f_n||_p \to ||f||_p$ then $f_n \to f$ in $L^p(\mathbf{R}, m)$. (10%)
- (3) Let C[-1,1] be the space of real continuous functions which vanish at -1 and 1. Is C[-1,1] equipped with the L^1 norm a Banach space? (10%)
- (4) Let $F(x) = \int_0^x f(t) dt$ for $x \in [0, 1]$, where f is an integrable function on [0, 1]. Is F of bounded variation over [0, 1]? (10%)
- (5) Let (X, F, μ) be a measure space with μ(X) < ∞ and 1 ≤ p < q < ∞.
 (a) Prove or disprove: L^p(X) ⊆ L^q(X). (8%)
 (b) Prove or disprove: ||f||_p ≤ ||f||_q. (7%)
- (6) Let $(\mathbf{X}, \mathcal{F}, \mu)$ be a measure space and f a real measurable function on \mathbf{X} . Let \mathcal{B} be the σ -algebra of Borel sets of \mathbf{R} . Set $\nu(E) = \mu(f^{-1}(E))$ for $E \in \mathcal{B}$. Show that ν is a measure on \mathcal{B} . (10%)
- (7) Let $(\mathbf{X}, \mathcal{F}, \mu)$ be a measure space and $A_n, n = 1, 2...$, be measurable sets. Prove or disprove: $\mu(\bigcap_{n=1}^{\infty} A_n) = \lim_{n \to \infty} \mu(\bigcap_{k=1}^{n} A_k)$. (10%)
- (8) Let $(\mathbf{X}, \mathcal{F}, \mu)$ be a measure space with $\mu(\mathbf{X}) < \infty$. Set $F(f) = \int_{\mathbf{X}} f \, d\mu$ for $f \in L^2(\mathbf{X}, \mu)$.
 - (a) Show that F is a bounded linear functional on $L^2(\mathbf{X}, \mu)$. (10%)
 - (b) Find the norm of F. (10%)

End of Paper