Real Analysis Ph.D. Qualifying Examination Feb. 25, 2010

Do all the problems below in detail. Each problem carries 10%. Here m denotes the Lebesgue measure.

(1) Let $\{g_n, n = 1, 2, ...\}$ be a sequence of uniformly bounded real functions on **R**. Suppose that $f_n \to f$ in $\mathbf{L}^{\mathbf{p}}$ and $g_n \to g$ a.e.. Show that $f_n g_n \to fg$ in $\mathbf{L}^{\mathbf{p}}$.

(2) Let [a, b] be a finite closed interval in **R**. Show that all C^1 functions are of bounded variation over [a, b].

(3) Let l^{∞} be the space of bounded sequence of real numbers and define $||\{a_n\}||_{\infty} = \sup_n |a_n|$. Show that l^{∞} equipped with the given norm is a Banach space.

(4) Let μ be a positive measure on a measurable space X. Suppose that $f \in L^1(X,\mu)$. Prove that for each $\epsilon > 0$, there is a $\delta > 0$ such that $\int_E |f| d\mu < \epsilon$ whenever $\mu(E) < \delta$.

(5) Let $E = \bigcup_{n=1}^{\infty} A_n$, $A_n \subset A_{n+1}$ for all $n \ge 1$. Let f be a nonnegative integrable function over E. Show that

$$\lim_{n \to \infty} \int_{A_n} f \, dm = \int_E f \, dm.$$

(6) Let m^* be the Lebesgue outer measure on **R** and E a measurable subset of **R**. Show that for every $\epsilon > 0$, there is a closed set $F \subset E$ with $m^*(E \setminus F) < \epsilon$.

(7) Let $(\mathbf{X}, \mathcal{F}, \mu)$ be a measure space and A_n , n = 1, 2..., measurable sets. Prove or disprove: $\mu(\bigcup_{n=1}^{\infty} A_n) = \lim_{n \to \infty} \mu(\bigcup_{k=1}^{n} A_k)$.

(8) Let $(\mathbf{X}, \mathcal{F}, \mu)$ be a measure space and g a nonnegative integrable function on \mathbf{X} . Set $\nu(E) = \int_E g \, d\mu$. Show that ν is a measure on \mathcal{F} .

(9) Let ν be as in (8) and f a nonnegative measurable function on **X**. Show that $\int_E f \, d\nu = \int_E f g \, d\mu$ for $E \in \mathcal{F}$.

(10) Let μ be a finite Baire measure on the real line. Show that its cumulative distribution function F is a monotone increasing bounded function which is continuous on the right.

End of Paper