Real Analysis

Ph.D. Qualifying Examination September, 2009

Do all the problems below in detail. Here m denotes the Lebesgue measure.

- (1) Are all real continuous functions on R Lebesgue measurable? [15%]
- (2) Let g be integrable over \mathbf{R} and let $\{f_n\}$ be a sequence of measurable functions such that $|f_n| \leq g$ and $f_n \to f$ on \mathbf{R} . Prove or disprove: $f_n \to f$ in L^1 , i.e., $\int_{\mathbf{R}} |f_n f| \, dm \to 0$. [10%]
- (3) Let f be a continuous function on [0,1]. Is f always of bounded variation over [0,1]? [10%]
- (4) Let $(\mathbf{X}, \mathcal{F}, \mu)$ be a finite measure space. Give and justify the inclusion relationship between $L^p(\mu)$ and $L^q(\mu)$ for $1 \leq p < q < \infty$. [15%]
- (5) Suppose that f is a nonnegative integrable function on \mathbf{R} . Let $\mu(A) = \int_A f(x) \, dm(x)$ for each measurable $A \subset \mathbf{R}$.
 - (a) Show that μ is a measure on R. [10%]
 - (b) Is μ absolutely continuous with respect to m? [10%]
 - (c) Is m absolutely continuous with respect to μ ? [10%]
- (6) (a) State the Fubini theorem. [10%]
 - (b) Give an example showing that interchanging the order of integration is not allowable. [10%]