國立中山大學應用數學系博士班資格考:機率論

Qualifying Examination in **Probability Theory** for the Ph.D. Program

February, 2020

Note: The proofs and statements must be detailed.

1. (15%) Let X be exponential distributed random variables with mean $\lambda > 0$. Show that

$$\Pr(X > s + t \mid X > s) = \Pr(X > t), \quad s, t \ge 0.$$

- 2. (15%) Let X and Y be independent and identical random variables having uniform distribution over [0, 1]. Find the probability that $g(s) = s^2 + 2Xs + Y > 0$ for all $s \in \mathbb{R}$.
- 3. (20%) Let X be a non-negative random variable. Show that

$$E[X] < \infty$$
 if and only if $\sum_{n=1}^{\infty} \Pr(X \ge n) < \infty$

- 4. (15%) Let X_1, X_2, \ldots be independent and identical random variables with $E[X_1^4] < \infty$. Show that $(\sum_{i=1}^n X_i)/n \to E[X_1]$ almost surely.
- 5. For a probability space (Ω, F, Pr), let {F_n} be an increasing sequence of sub-σ-algebras of F. Assume that E[X²] < ∞. Let Z_n = E[X | F_n], n = 1, 2, 3,
 (a)(10%) Show that {Z_n, F_n} is a martingale.
 (b)(10%) Show that E[Z_n²] < ∞ for all n = 1, 2, 3,
- 6. (15%) Let $\{X_n\}$ be a Markov chain with state space $S = \{0, 1, 2, ..., a\}, a \ge 3$, and its transition probability

$$\Pr(X_{n+1} = j \mid X_n = i) = \begin{cases} 1 & \text{if } i = j = 0 \text{ or } i = j = a, \\ p & \text{if } j = i + 1, 1 \le i \le a - 1, \\ 1 - p & \text{if } j = i - 1, 1 \le i \le a - 1, \\ 0 & \text{if otherwise.} \end{cases}$$

Let $T = \min\{n : X_n = 0\}$. Find $E[T \mid X_0 = 2]$.