Qualifying Exam for Ph.D. Program of Numerical Linear Algebra, September, 10, 2009

1. Let

CHARLES PROPERTY AND SOUNDANDED BY THE ANGEL OF THE ANGEL

$$A = \left[egin{array}{cc} 375 & 374 \\ 752 & 750 \end{array}
ight].$$

- (a) Compute A^{-1} and $\kappa_{\infty}(A)$, the condition number of A in ∞ -norm.
- (b) Give b, δb , x and δx satisfying

$$Ax = b,$$
 $A(x + \delta x) = b + \delta b$

so that
$$\frac{\|\delta b\|_{\infty}}{\|b\|_{\infty}} \simeq O(10^{-3})$$
, but $\frac{\|\delta x\|_{\infty}}{\|x\|_{\infty}} \simeq O(1)$. (7%)

(c) Give b, δb , x and δx satisfying

$$Ax = b,$$
 $A(x + \delta x) = b + \delta b$

so that $\frac{\|\delta x\|_{\infty}}{\|x\|_{\infty}} \simeq O(10^{-3})$, but $\frac{\|\delta b\|_{\infty}}{\|b\|_{\infty}} \simeq O(1)$. (8%) **Hint:** $A = \begin{bmatrix} a & a-1 \\ 2*(a+1) & 2*a \end{bmatrix}$, where a = 375, and consider the "nearly" null space and range of matrix A and A^{-1} , respectively.

- (a) Verify that a triangular unitary matrix must be diagonal. (5%)
 - (b) Show that any unitary matrix must be a product of Givens rotation matrices and Householder reflection matrices. (10%) Hint: Use the basic unitary matrices, Givens rotations or Householder reflections, to obtain the QR-factorization of the target unitary matrix.
- 3. Consider the least squares problem

$$\min_{x \in \mathbb{C}^n} \|b - Ax\|_2, \tag{LS}$$

where $A \in \mathbb{C}^{m \times n}$ and $b \in \mathbb{C}^m$ are given.

(a) Let $x \in \mathbb{C}^n$ be a solution of (LS) and define r = b - Ax. Verify that x solves the normal equation $A^H A x = A^H b$ and the following enlarged system holds, (10%)

$$\left[\begin{array}{cc} I & A \\ A^H & 0 \end{array}\right] \left[\begin{array}{c} r \\ x \end{array}\right] = \left[\begin{array}{c} b \\ 0 \end{array}\right]$$

(b) Consider Wuzawa's iteration

 $x_{k+1} = x_k + \varpi Q^{-1} A^H r_k$, k = 0, 1, ..., and $x_0 \in \mathbb{C}^n$ is given, where $\varpi \in \mathbb{R}$ is the Wuzawa parameter, $r_k = b - Ax_k$ and $Q \approx A^H A$ is Hermitian and positive definite.

- i.) Show that the eigenvalues of matrix $Q^{-1}A^HA$ are always real and nonnegative. (10%)
- ii.) Determine an interval for the parameter ϖ such that Wuzawa's iteration converges. (10%)

Hint: using an upper bound of the eigenvalues of $Q^{-1}A^{H}A$.

- iii.) Show that the iterative vectors x_k converges to a solution of problem (LS) whenever Wuzawa's iteration is convergent.
- 4. Show that for any square matrices A and $T^H=T$, (10%)

$$\|A - \frac{A + A^H}{2}\| \le \|A - T\|.$$

5. Let A be an $m \times n$ matrix, having singular values $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0 = \sigma_{r+1} = \cdots = \sigma_{\min\{m,n\}}$. Verify that for any $m \times n$ matrix B with rank $(B) = k \leq r$,

$$||A - B||_2 \ge \sigma_{k+1}.$$

In addition, find a matrix B such that the equality can be achieved.

6. An $n \times n$ matrix A is strictly diagonally dominant if

$$|a_{ii}| > \sum_{j=1, j \neq i}^{n} |a_{ij}|, \text{ for } i = 1, \dots, n.$$

Here a_{ij} , i, j = 1, ..., n, denotes the (i, j)-th element of matrix A. Show that a strictly diagonally dominant matrix is nonsingular. (10%)