Qualifying Exam for the PH. D. Program of Numerical Linear Algebra.

Seven questions with the marks indicated.

- 1.(5) Give a definition of Mathematics.
- 2.(15) Suppose that there exists a root of f(x) = 0 and $0 < f'(x) \le M$. Prove that $x_{n+1} = x_n \lambda f(x_n)$ yields the convergence sequence x_n to the root for arbitrary $x_0 \in (-\infty, \infty)$ and $0 < \lambda < \frac{2}{M}$.
- 3.(20) Let $A \in \mathbb{R}^{n \times n}$, $Cond.(A) = \{\frac{\lambda_{max}(A^TA)}{\lambda_{min}(A^TA)}\}^{\frac{1}{2}}$, where $\lambda_{max}(A)$ and $\lambda_{min}(A)$ are the maximal and the minimal eigenvalues of matrix A, respectively. Prove the following:
- (1) $Cond.(AB) \leq Cond.(A)Cond.(B)$,
- (2) Cond.(UA) = Cond.(A), where $U \in \mathbb{R}^{n \times n}$ is an orthogonal matrix.
- 4.(15) Consider the linear algebraic equations with their perturbations Ax = b, $A(x + \Delta x) = b + \Delta b$, where the matrix $A \in R^{n \times n}$ is symmetric and positive definite, and $x, \Delta x, b, \Delta b \in R^n$ are vectors. Prove

$$\frac{\|\Delta x\|}{\|x\|} \le \frac{\lambda_n}{\lambda_1} \frac{\|\Delta b\|}{\|b\|},$$

where ||x|| is the Euclidean norm of vector x, and λ_n and λ_1 are the maximal and the minimal eigenvalues of A, respectively.

5.(15) Determine the eigenvalues and the eigenvectors for both a=0 and a>0. Observe the behavior as $a\to 0$, where

$$A = \left(\begin{array}{ccc} 1 & 1 & 0 \\ 0 & 1 & a \\ 0 & a & 1 \end{array}\right).$$

- 6.(15) Solve Ax = b by the iteration method, $x^{n+1} = x^n w(Ax^n b)$, where w is parameter to be sought, and A is symmetric and positive definite with the eigenvalues λ_i to satisfy $0 < a \le \lambda_i \le b$. Find the optimal parameter w.
- 7.(15) To fix the function $y = f(x) = a \exp(bx)$ by the known data $(x_i, y_i), i = 1, 2, ..., n$, where $y_i > 0$ and $n \ge 2$. Design a least squares algorithm to find the optimal parameters a and b.