Feb. 2010

If you think that a problem has been stated incorrectly, mention this to the proctor and indicate your interpretation in your solution. In such cases, do not interpret the problem in such a way that it becomes trivial.

1. Let $\mathbb{R}(t,s)$ denote the set of (real) floating-point numbers on computers. Thus,

$$x \in \mathbb{R}(t,s)$$
 iff $x = f \cdot 2^e$,

where $f = \pm (.b_{-1}b_{-2}\cdots b_{-t})_2$, $e = \pm (c_{s-1}c_{s-2}\cdots c_0)_2$ and all b_i and c_j are binary digits.

(a)[6 points] What is the distance d(x) of a positive normalized floating-point number $x \in \mathbb{R}(t,s)$ to its next larger floating-point number:

$$d(x) = \min_{\substack{y \in \mathbb{R}(t,s) \\ y > x}} (y - x)?$$

(b)[7 points] Determine the relative distance r(x) = d(x)/x, with x as in (a), and give upper and lower bounds for it.

(c)[7 points] Prove that

$$\max_{x \in \mathbb{R}(t,s)} |x| = (1 - 2^{-t})2^{2^{s}-1} \qquad \min_{x \in \mathbb{R}(t,s)} |x| = 2^{-2^{s}}$$

2. Consider a quadrature formula of the type

$$\int_0^1 f(x)dx = -\alpha f'(0) + \beta f(\frac{1}{2}) + \alpha f'(1) + E(f).$$

(a) [6 points] Use the method of undetermined coefficients to find α , β such that the formula has maximum degree of exactness.

(b) [7 points] What is the precise degree of exactness of the formula obtained in (a)?

(c) [7 points] Use the Peano Kernel of the error functional E to express E(f) in terms of the appropriate derivative of f reflecting the result of (b).

- 3. Consider the nonlinear equation F(x)=0, where $F:\Omega\longmapsto\mathbb{R}^n,\Omega\subset\mathbb{R}^n$ is a C^1 function.
 - (a) [10 points] Derive the Newton's method, namely for a given initial guess x_0 derive the formula for x_{k+1} in terms of x_k if Newton's method is used for approximate solution F(x) = 0.
 - (b) [10 points] Assume that $F \in C^3$ and $F'(x_*)$ is non-singular, where x_* is a solution of F(x) = 0. Prove that the Newton's method is well defined if x_0 is sufficiently close to x_* and that the sequence of Newton iterates converges quadratically to the solution.
- 4. [20 points] Consider the boundary value problem

$$-u'' + u' + u = f$$
 on $[0, 1]$, $u'(0) = u'(1) = 0$.

Take

$$V = H1(0,1)$$

$$a(u,v) = \int_0^1 (u'v' + u'v + uv) dx$$

$$F(v) = (f, v)$$

Prove that $a(\cdot, \cdot)$ is continuous and V-elliptic (coercive). If the above differential equation is changed to

$$-u'' + ku' + u = f.$$

Show that $a(\cdot, \cdot)$ need not be coercive for large k.

5. [20 points] Consider the Possion's equation in polar coordinates,

$$\frac{1}{r}\frac{\partial}{\partial r}(r\frac{\partial u}{\partial r}) + \frac{1}{r^2}\frac{\partial^2 u}{\partial \theta^2} = f(r,\theta),$$

with $0 \le r \le s(\theta)$ and $0 \le \theta \le 2\pi$. Change coordinates to (ρ, ϕ) given by $\rho = \frac{r}{s(\theta)}$ and $\phi = \theta$. Derive (and prove) a finite difference scheme in a form that gives a positive definite and symmetric matrix.