Qualified Exam for the Ph.D of Numerical DEs

September 2009

Five questions with the marks indicated. Please write down all the detail of your computation and answers.

1. (15%) Let $f(x) \in C^{4}[a, b]$, and let $s(x)$ be the piecewise cubic Hermite interpolant of $f(x)$ relative to the partition

$$
a=x_{0}<x_{1}<x_{2}<\cdots<x_{n-1}<x_{n}=b .
$$

Show that

$$
\max _{x \in[a, b]}|f(x)-s(x)| \leq \frac{h^{4}}{384} \max _{x \in[a, b]}\left|f^{(4)}(x)\right|
$$

where $h=\max _{0 \leq i \leq n-1}\left(x_{i+1}-x_{i}\right)$.
2. $(10 \%+10 \%)$ Let $f(x) \in C^{4}(D)$ and $\max _{x \in D}\left|f^{(4)}(x)\right|=M$.
(a) Derive an $O\left(h^{2}\right)$ three-point formula to approximate $f^{\prime \prime}\left(x_{1}\right)$ that uses $f\left(x_{0}\right)$, $f\left(x_{1}\right)$ and $f\left(x_{2}\right)$, where $x_{i}=x_{0}+i h \in D, i=0,1,2$.
(b) Assume the actual values used is \tilde{f}_{i} with

$$
f\left(x_{i}\right)=\tilde{f}_{i}+\varepsilon_{i}, \quad\left|\varepsilon_{i}\right| \leq E, \quad i=0,1,2
$$

Derive the errors bounded of the actual numerical derivative computed and find an optimal value of $h>0$.
3. $(10 \%+10 \%)$ Consider the boundary value problem

$$
\begin{equation*}
-\Delta u=f, \quad(x, y) \in \Omega ; \quad u_{\nu}=g, \quad(x, y) \in \partial \Omega=\Gamma \tag{1}
\end{equation*}
$$

(a) Variational formulation: Find $u \in V$ such that $a(u, v)=L(v), \forall v \in V$. What are the appropriate choices of a Hilbert space V, a bilinear form $a(\cdot, \cdot)$ and a linear functional $L(\cdot)$ for the variational formulation of (1) ?
(b) Show that a solution exists only if

$$
\iint_{\Omega} f d x d y+\int_{\Gamma} g d s=0
$$

and that if u is a solution then so is $u+c$, where c is an arbitrary constant.
4. $(10 \%+10 \%)$ Consider the initial value problem

$$
\begin{equation*}
y^{\prime}(x)=f(x, y(x)), \quad x \in[a, b] ; \quad y(a)=\alpha . \tag{2}
\end{equation*}
$$

(a) Derive Euler's method with the stepsize h to solve (2) with local truncation error.
(b) Show that Euler's method fails to approximate the solution $Y(x)=\left(\frac{2}{3} x\right)^{\frac{3}{2}}$, $x \geq 0$, of the problem $y^{\prime}=y^{\frac{1}{3}}, y(0)=0$. Explain why.
5. $(7 \%+10 \%+8 \%)$ Consider the heat equations

$$
\begin{align*}
& u_{t}=u_{x x}, \quad t \geq 0, \quad 0 \leq x \leq 1, \\
& u(0, t)=u(1, t)=0, \quad t \geq 0 \tag{3}\\
& u(x, 0)=f(x), \quad x \in[0,1]
\end{align*}
$$

where $f(x)$ is continuous.
(a) Construct an explicit scheme in solving (3) numerically.
(b) Discuss the convergent and stability properties of your scheme.
(c) Construct an implicit scheme to improve the stability of (a).

