Ph.D. Qualifying Examination Matrix Theory Feb. 10, 2006

Please write down all the detail of your computation and answers.

1. (15%) For every $n \times n$ complex matrix $A = (a_{ij})_{n \times n}$, define

$$||A|| = \sqrt{\sum_{i,j=1}^{n} |a_{ij}|^2}.$$

Show that it is a matrix norm compatible with the vector norm

$$||(x_1, x_2, \cdots, x_n)^T|| = \sqrt{\sum_{i=1}^n |x_i|^2}.$$

- 2. (15%) (1) State the singular value decomposition for $m \times n$ complex matrix.
 - (2) Show that such decomposition exists for all $m \times n$ complex matrices.
- 3. (15%) Let A be an $m \times n$ complex matrix with rank r. Find the necessary and sufficient conditions on m, n and r such that the number of solutions of $A\mathbf{x} = \mathbf{b}$ is (1) 0 or 1 depending on b; (2) ∞ for every b; (3) 0 or ∞ depending on b; (4) 1 for every b. Prove your answers.
- 4. (15%) Let A be an $n \times n$ complex matrix. Show that the followings are equivalent: (1) A is Hermitian, (2) $\mathbf{x}^*A\mathbf{x} \in \mathbf{R}$ for all $\mathbf{x} \in \mathbf{C}^n$, (3) A is normal with all eigenvalues real, (4) S^*AS is Hermitian for all $n \times n$ complex matrix S.
- 5. (15%) Let

$$A = \left(\begin{array}{cccc} a & b & b & b \\ b & a & b & b \\ b & b & a & b \\ b & b & b & a \end{array}\right).$$

- (1) For $\mathbf{x} \in \mathbf{R}^4$, write the quadratic form $\mathbf{x}^T A \mathbf{x}$ as a linear combination of some squares.
- (2) Find and prove the necessary and sufficient condition on a and b such that A is symmetric positive definite.
- 6. (15%) Let $A = (a_{ij})_{n \times n}$ and $B = (b_{ij})_{n \times n}$ be two real matrices.
 - (1) If $0 \le a_{ij} \le b_{ij}$ for all i and j, show that the spectral radiuses $\rho(A) \le \rho(B)$.
 - (2) If $0 \le a_{ij} < b_{ij}$ for all i and j, show that $\rho(A) < \rho(B)$.
 - (3) Is it possible that $0 \le a_{ij} \le b_{ij}$ for all i and j, and $A \ne B$, but $\rho(A) = \rho(B)$? Why?
- 7. (10%) For every complex square matrix A, show that there are a diagonalizable matrix D and a nilpotnet matrix N such that A = D + N and DN = ND.