Qualified Examination–Mathematical Programming

February 2014

20 points for each of the following problems

1. Let A be an $m \times n$ matrix. Show that exactly one of the following two systems has a solution.

 $\begin{array}{ll} System \ 1 & Ax > 0\\ System \ 2 & A^ty = 0, y \geq 0, y \neq 0 \end{array}$

- Consider the function θ defined by the following optimization problem: θ(u₁, u₂) = Minimum x₁(1 u₁) + x₂(1 u₂) subject to x₁² + x₂² ≤ 1.
 a. Show that θ is concave.
 b. Evaluate θ at the point (1, 1).
 - c. Find the collection of subgradients of θ at (1, 1).
- 3. Solve the following problem: Minimize $x_1 + 3x_2 + x_3$ subject to $x_1 + 4x_2 + 3x_3 \le 12, -x_1 + 2x_2 x_3 \le 4, x_1, x_2, x_3 \ge 0$
- 4. Let $f: \mathbb{R}^n \to \mathbb{R}$, $g_i: \mathbb{R}^n \to \mathbb{R}$ be convex functions, i = 1, 2, ..., m. Consider the problem to minimize f(x) subject to $g_i(x) \leq 0$ for i = 1, 2, ..., m. Let M be a proper subset of $\{1, ..., m\}$ and suppose that \hat{x} solves the problem to minimize f(x) subject to $g_i(x) \leq 0$ for $i \in M$. Let $V = \{i : g_i(\hat{x}) > 0\}$. If \bar{x} solves the original problem, show that $g_i(\bar{x}) = 0$ for some $i \in V$.
- 5. Suppose that $f : \mathbb{R}^n \to \mathbb{R}$ is twice differentiable at x. If $\nabla f(x) = 0$ and H(x) is positive definite, then x is a local minimum, where H(x) is the Hessian matrix of f at x.