Qualified Examination: Mathematical Programming February 2009

1. Solve the following problem:

Maximize
$$6x_1 + 4x_2 + 2x_3$$

Subject to $4x_1 - 3x_2 + x_3 \le 8$
 $3x_1 + 2x_2 + 4x_3 \le 10$
 $0 \le x_1 \le 3$
 $0 \le x_2 \le 2$
 $0 \le x_3$

2. Solve the following problem:

Minimize
$$\frac{x_1+3x_2+3}{2x_1+x_2+6}$$

Subject to $2x_1+x_2 \le 12$
 $-x_1+2x_2 \le 4$
 $x_1, x_2 > 0$

- 3. Let $f: \mathbb{R}^n \to \mathbb{R}$ be defined by $f(x) = x^t H x$ where H is an $n \times n$ matrix. The function f is said to be positive subdefinite if $x^t H x < 0$ implies $H x \ge 0$ or $H x \le 0$ for each $x \in \mathbb{R}^n$. Prove that f is quasiconvex on the nonnegative orthant if and only if it is positive subdefinite.
- 4. Let $f: \mathbb{R}^n \to \mathbb{R}$ be convex. Show that ξ is a subgradient of f at u if and only if the hyperplane $\{(x,y): y=f(u)+\xi^t(x-u)\}$ supports epi f at [u,f(u)].