Qualified Examination: Mathematical Programming September 2007

1. Solve the following problem:

Maximize
$$4x_1 + 5x_2 + 7x_3 - x_4$$

Subject to $x_1 + x_2 + 2x_3 - x_4 \ge 1$
 $2x_1 - 6x_2 + 3x_3 + x_4 \le -3$
 $-2x_1 + 4x_2 + 3x_3 + 2x_4 = -5$
 $x_1, x_2, x_4 \ge 0$
 x_3 unrestricted

2. Solve the following problem:

Minimize
$$x_1^2 - x_1x_2 + 2x_2^2 - 4x_1 - 5x_2$$

Subject to $x_1 + 2x_2 \le 6$
 $x_1 \le 2$
 $x_1, x_2 \ge 0$

- 3. Let $f: \mathbb{R}^n \to \mathbb{R}$ be defined by $f(x) = x^t H x$ where H is an $n \times n$ matrix. The function f is said to be positive subdefinite if $x^t H x < 0$ implies $H x \ge 0$ or $H x \le 0$ for each $x \in \mathbb{R}^n$. Prove that f is quasiconvex on the nonnegative orthant if and only if it is positive subdefinite.
- 4. Use the Kuhn-Tucker conditions to prove Farkas' theorem.