Qualified Examination: Mathematical Programming September 2006

- 1. Consider the problem to minimize f(x) subject to $Ax \leq b$. Suppose that x is a feasible solution such that $A_1x = b_1$ and $A_2x < b_2$ where $A^t = (A_1^t, A_2^t)$ and $b^t = (b_1^t, b_2^t)$. Assume that A_1 has full rank, the matrix P that projects any vector in the null space of A_1^t is given by $P = I A_1^t (A_1 A_1^t)^{-1} A_1$.
 - a. Let $d = -P\nabla f(x)$. Show that if $d \neq 0$, then it is an improving feasible direction;
 - b. Suppose that d=0 and that $u=-(A_1A_1^t)^{-1}A_1\nabla f(x)\geq 0$. Show that x is a Kuhn-Tucker point;
 - c. Show that d generated above is of the form λv for some $\lambda > 0$ where v is an optimal solution of the following problem: Minimize $\nabla f(x)^t w$ subject to $A_1 w = 0$ and $||w||^2 \le 1$;
- 2. Consider the function θ defined by the following optimization problem: $\theta(u, v)$ =Minimize x(1-u) + y(1-v) subject to $x^2 + y^2 \le 1$.
 - a. Show that θ is concave;
 - b. Evaluate $\theta(1,1)$;
 - c. Find the collection of subgradients of θ at (1,1).
- 3. Let A be a $p \times n$ matrix and B be a $q \times n$ matrix. Show that exactly one of the following systems has a solution.

System 1
$$Ax < 0$$
 $Bx = 0$ for some $x \in \mathbb{R}^n$
System 2 $A^t u + B^t v = 0$ for some $(u, v), u \neq 0, u \geq 0$.

- 4. Let K be a closed convex subset in \mathbb{R}^n and $f:K\to\mathbb{R}^n$ be a differentiable and convex function. Show that $x\in K$ is a solution to the problem: Minimize f(y) subject to $y\in K$ if and only if x is a solution of the following problem: Find $y\in K$ such that $\langle \nabla f(y), v-y\rangle \geq 0$ for all $v\in K$.
- 5. Let $f: \mathbb{R}^n \to \mathbb{R}$ be convex. Show that ξ is a subgradient of f at x if and only if the hyperplane $\{(x,y): y=f(\bar{x})+\xi^t(x-\bar{x})\}$ supports epif at $[\bar{x},f(\bar{x})]$.