Qualified Examination: Mathematical Programming February 2006

1. Let $f: S \to R$ be a convex and differentiable function where S is a closed and convex subset in R^n . Show that $x \in S$ is a solution of the problem $\min_{y \in S} f(y)$ if and only if x is a solution of the following problem:

$$\langle \nabla f(x), y - x \rangle \quad \forall y \in S.$$

- 2. Let f be twice continuously differentiable on the open convex set $C \subset \mathbb{R}^n$. Show that f is convex on C if and only if its Hessian matrix $\nabla^2 f(x)$ is positive semi-definite for all $x \in C$.
- 3. Solve the following problem:

Minimize
$$-x_1 - 2x_2 + x_3$$

Subject to $x_1 + x_2 + x_3 \le 4$
 $-x_1 + 2x_2 - 2x_3 \le 6$
 $2x_1 + x_2 \le 5$
 $x_1, x_2, x_3 \ge 0$

- 4. Consider the problem: Minimize $x_1 + 2x_2$ subject to $3x_1 + x_2 \ge 6$, $-x_1 + x_2 \le 2$, $x_1 + x_2 \le 8$ and $x_1, x_2 \ge 0$. Let $X = \{(x_1, x_2) : -x_1 + x_2 \le 2, x_1 + x_2 \le 8, x_1, x_2 \ge 0\}$.
 - a. Formulate the Lagrangian dual problem.
 - b. Show that $f(w) = 6w + \text{Minimum}\{0, 4 2w, 13 14w, 8 24w\}$.
 - c. Plot f(w) for each value of w.
 - d. From part (c) locate the optimal solution to the Lagrangian dual problem.
 - e. From part (d) find the optimal solution to the primal problem.
- 5. Let X be a metric space and $f: X \to R \cup \{\infty\}$. Prove that f is lower semicontinuous if and only if epif is closed.