Department of Applied Mathematics, National Sun Yat-sen University Ph.D. Program Qualifying Exam Functional Analysis, Spring 2019

Answer any 5 of the following questions (20 points for each question).

In the following, \mathcal{H} always represents a complex Hilbert space and $B(\mathcal{H})$ stands for the set of bounded linear operators on \mathcal{H} . Besides, \mathcal{A} means a Banach algebra with identity e.

- 1. Let φ be a semi-inner product on a linear space X and $N = \{x \in X : \varphi(x, x) = 0\}.$
 - (1) Show that N is a linear subspace of X.
 - (2) Show that $\langle x + N, y + N \rangle = \varphi(x, y)$ for x + N and y + N in the quotient space X/N induces an inner product on X/N.
- 2. Suppose that $\mathcal{E} = \{e_n\}$ is an orthonormal basis of \mathcal{H} and $T : \mathcal{E} \to \mathcal{H}$ is a map so that $\sum ||Te_n|| < \infty$. Prove that T extends uniquely as an element in $B(\mathcal{H})$.
- 3. Let P and Q be orthogonal projections of \mathcal{H} onto two closed subspaces of \mathcal{H} . Show that P + Q is an orthogonal projection if and only if $P \perp Q$.
- 4. Let $T \in B(\mathcal{H})$ be a self-adjoint operator with $||T|| \leq 1$. Prove that $T = 2S(1 + S^2)^{-1}$ for some self-adjoint operator $S \in B(\mathcal{H})$.
- 5. Let $T \in B(\mathcal{H})$ be a normal operator. Show that $T^* = T$ if and only if $\exp(iT)$ is a unitary operator.
- 6. Let μ be a compactly supported probability measure on the real line. Show that there exist a Hilbert space \mathcal{H} , a positive linear functional ϕ on $B(\mathcal{H})$, and an operator $T \in B(\mathcal{H})$ for which

$$\phi(f(T)) = \int f \, d\mu$$

holds for any bounded and continuous function f on the real line.

- 7. Prove that every weakly compact set in a Banach space is a bounded set.
- 8. Let $\{x_n\}$ be a sequence in a normed space X such that $x_n \to x \in X$ weakly. Prove that there is a sequence $\{y_n\}$ such that each y_n belongs to the convex hull of $\{x_1, x_2, \ldots, x_n\}$ and $||y_n x|| \to 0$.
- 9. Let a and b be in \mathcal{A} . Show that $\sigma(ab) \cup \{0\} = \sigma(ba) \cup \{0\}$. Is $\sigma(ab) = \sigma(ba)$ always true? Prove or disprove your answer for the second question.
- 10. Show that the set G of invertible elements in \mathcal{A} is open and the mapping $x \mapsto x^{-1}$ on G is continuous.

End of Paper