Department of Applied Mathematics, National Sun Yat-sen University Ph.D. Program Qualifying Exam Functional Analysis, Fall 2016

Answer any 5 of the following questions. (20 points for each question)

- 1. Show that the weak closure of the unit circle $\{x \in \mathfrak{X} : ||x|| = 1\}$ in an infinitedimensional normed space \mathfrak{X} is the closed unit ball $\{x \in \mathfrak{X} : ||x|| \le 1\}$.
- 2. Suppose that u is a unitary element in a unital C^* -algebra \mathcal{A} with spectrum $\sigma(u)$ strictly smaller than the unit circle \mathbb{T} . Show that there exists a self-adjoint element a in \mathcal{A} such that $u = \exp(ia)$. Does the conclusion still hold if $\sigma(u) = \mathbb{T}$?
- 3. Let *a* be a self-adjoint element in a unital C^* -algebra \mathcal{A} with $||a|| \leq 1$. Show that there exists a self-adjoint element *b* in \mathcal{A} such that $a = 2b(1+b^2)^{-1}$.
- 4. Show that an element a in a unital C^{*}-algebra \mathcal{A} is positive if and only if $\phi(a) \geq 0$ for every state ϕ on \mathcal{A} .
- 5. Let a be an invertible element in a Banach algebra \mathcal{A} . Show that an element $b \in \mathcal{A}$ satisfying $||b-a|| \leq ||a^{-1}||^{-1}$ is invertible.
- 6. Let $\mu, \mu_1, \mu_2, \ldots$ be Borel probability measures on \mathbb{R} . Show that μ_n converges to μ in the weak^{*} topology if and only if

$$\lim_{n\to\infty}\int_{\mathbb{R}}\varphi\;d\mu_n=\int_{\mathbb{R}}\varphi\;d\mu$$

for every $\varphi \in C_c(\mathbb{R})$.

- 7. Let $T, S \in \mathcal{B}(\mathcal{H})$ satisfy $T^*T \leq S^*S$. Show that there exists $A \in \mathcal{B}(\mathcal{H})$ such that $||A|| \leq 1$ and T = AS.
- 8. Show that every weakly compact set in a Banach space is a bounded set.
- 9. Let p and q be orthogonal projections of a complex Hilbert space onto closed subspaces \mathcal{M} and \mathcal{N} , respectively. Show that p+q is an orthogonal projection if and only if $p \perp q$.

End of Paper