Answer any 5 of the following questions.

- 1. Let u be a semi-inner product on a linear space X and put $N = \{x \in X : u(x, x) = 0\}.$
 - (a) Show that N is a linear subspace of X.
 - (b) Show that if $\langle x + N, y + N \rangle \equiv u(x, y)$ for all x + N and y + N in the quotient space X/N, then $\langle \cdot, \cdot \rangle$ is a well-defined inner product on X/N.
- 2. Let X be a normed space. Prove that X is a Banach space if and only if whenever $\{x_n\}$ is a sequece in X such that $\sum ||x_n|| < \infty$, then $\sum_{n=1}^{\infty} x_n$ converges in X.
- 3. Let X be a vector space and suppose $\|\cdot\|_1$ and $\|\cdot\|_2$ are two norms on X and that T_1 and T_2 are the corresponding topologies. Show that if X is complete in both norms and $T_1 \supseteq T_2$, then $T_1 = T_2$.
- 4. Let X be a normed space and let $\{x_n\}$ be a sequence in X such that $x_n \to x$ weakly. Show that there is a sequence $\{y_n\}$ such that $y_n \in co\{x_1, x_2, \ldots, x_n\}$ and $||y_n x|| \to 0$.
- 5. Let A be a Banach algebra with identity, and $a, b \in A$. Show that $\sigma(ab) \cup \{0\} = \sigma(ba) \cup \{0\}$ and give an example such that $\sigma(ab) \neq \sigma(ba)$.
- 6. If H is a Hilbert space, A is a normal operator on H, and $f \in Hol(A)$, show that f(A) is normal.