Functional Analysis

Ph.D. Qualifying Examination National Sun Yat-sen University September, 2009.

Answer 5 out of the following 6 problems. Each problem carries 20%. The total is 100%. Unless otherwise stated, X denotes a Banach space over a scalar field K, and X^* denotes its dual.

- (1). We say $x \perp y$ (x is orthogonal to y in X if $||x|| \leq ||x + \lambda y||$ for all $\lambda \in K$.
 - (a) Show by an example that $x \perp y$ need not imply $y \perp x$.
 - (b) Show by an example that $x \perp y$ and $x \perp z$ need not imply $x \perp (y+z)$.
 - (c) Show that if X is a Hilbert space with inner product (\cdot, \cdot) , then $x \perp y$ if and only if (x, y) = 0.
- (2). A sequence $A = \{x_n\}$ is said to be complete in X if the set of all finite linear combinations of elements of A is dense in X. Show that A is complete in X if and only if for any $f \in X^*$, $f(x_n) = 0$ for all $x_n \in A$ implies that $f \equiv 0$.
- (3). Suppose that Y is also a Banach space, and $T : X \to Y$ be a compact linear operator. Show that if $\dim(X/Ker(T)) = \infty$, then there is a sequence $\{x_n\} \subset X$ such that $||x_n|| \ge 1$ but $y_n = T(x_n) \to 0$.
- (4). (a) Let $A \subset X$ such that for any fixed $f \in X^*$, $\sup_{x \in A} |f(x)| < \infty$. Show that $\sup_{x \in A} ||x|| < \infty$.
 - (b) Let f be a linear functional on a Hilbert space H with domain H. Show that f is continuous if and only if Ker(f) is closed in H.

(5). (a) Show that a Banach space H is a Hilbert space if and only if the norm satisfies the parallelogram law:

$$||f + g||^2 + ||f - g||^2 = 2(||f||^2 + ||g||^2), \quad \text{for any } f, g \in H$$

- (b) Show that $L^{\infty}[0, 1]$, with its equipped norm, is a Banach space, but is not a Hilbert space.
- (6). Let \mathcal{A} be a Banach algebra with identity 1 and $x \in \mathcal{A}$.
 - (a) Show that if ||x 1|| < 1, then x is invertible. What is the inverse of x?
 - (b) Hence show that the set G of invertible elements in \mathcal{A} is open and the mapping $x \longmapsto x^{-1}$ on G is continuous.

End of Paper