Functional Analysis

PHD-Qualified test, 2006

(1). Prove or disprove the following problems

- (a) Let X be a normed linear space and X_0 a proper closed subspace of X. Then $\forall \theta, 0 < \theta < 1, \exists x_{\theta} \in X \text{ such that } ||x_{\theta}|| = 1 \text{ and } ||x - x_{\theta}|| \ge \theta, \forall x \in X_{\theta}.$ (10 points)
- (b) Following the symbols of (a), If X_0 is finite dimensional then x_θ can be chosen distance 1 from X_0 .(10 points)

(2). Prove the following problems

- (a) Let X and Y be normed linear spaces and $X_0 \neq \{0\}$. If L(X, Y) is a Bnach space, then Y is a Banach space. (10 points)
- (b) Let X be a TVS(Topological vector space) and $K \subseteq X$ absolute convex(ie. it is balance and convex) and absorbing. Then the Minkowski functional P_K of K(gauge of K) defined by $P(x) = \inf\{t > 0 : x \in tK\}$ is continuous if and only if K is a neighborhood of 0. (10 points)

(3). Prove or disprove the following problems: Let A be a C^* algebra, if a, b are positive elements of A.

- (a) $a \le b$ implies that $a^{\frac{1}{2}} \le b^{\frac{1}{2}}$.(10 points)
- (b) $a \le b$ implies that $a^2 \le b^2$. (10 points)

(4). Prove that if H is a separable Hilbert space then the proper and closed two side ideal of B(H) is $B_0(H)$ (the space of compact operators) (20 points)

(5). Prove that if H is a Hilbert space then the subset S of B(H) which is linearly spanned by the rank one projections is dense in $B_0(H)$ (the space of compact operators) (20 points).

2