Qualifying Examination in Discrete Mathematics

for the Ph. D. Program

September 2012

Note: The proofs and statements must be detailed. When you quote some theorems, please prove them.

- 1. Prove that if G is a simple graph with maximum degree 3, then the chromatic index of G is less than or equals to 4. (20%)
- 2. Find the number of rooted trees with the vertex set {1,2,...,9}. (20%)
- 3. Let n and m be positive integers with $n \ge m$. Prove the binomial equation: $\sum_{k=0}^{m} {m \choose k} {n \choose m-k} = {m+n \choose m}$ by two different ways. (20%)
- 4. Let n be a positive integer, and S be the set of all $2 \times n$ matrices $A=[a_{ij}]$ with $\{a_{11},a_{12},...,a_{1n}\}=\{a_{21},a_{22},...,a_{2n}\}=\{1,2,...,n\}$ and $a_{1k}\neq a_{2k}$ for k=1,2,...,n. Find the cardinality of S. (20%)
- 5. True or False.(If true, prove it; if false, give a counterexample and your explanation.)
 - (a) If G is a 3-regular graph with no cut-edge, then the chromatic index of G is 3. (10%)
 - (b) If G is a 3-connected graph, then G is 3-edge-connected. (10%)