Qualifying Examination in Discrete Mathematics for the Ph. D. Program

February 2006

Let |S| be the cardinality of a set S, N be the set of all positive integers, and a cycle be a 2-regular connected graph.

1. State and prove Hall's Theorem.

(15%)

- 2. Prove that every 2k-regular graph with even order $n \ge 3$ and k > 0 has a spanning subgraph with each component being a cycle. (15%)
- 3. Let S be the set of permutations (a,b,c,d,e,f) on $\{1,2,3,4,5,6\}$ with $a\neq 1,2,3, b\neq 2,3, c\neq 3, d\neq 4,5,$ and $e\neq 5$. Find the number |S|. (15%)
- 4. Suppose G is a strongly connected tournament with order $n \ge 3$. Prove that G contains directed cycles of length between 3 and n.(15%)
- 5. True or False. (If the statement is true, prove it; if it is false, give a counterexample) (10%×4)
 - (a) If G is a planar graph with the girth at least 4 then G has a vertex of degree at most 3.
 - (b) Let A_n be a set for $n \in \mathbb{N}$. If, for each finite set $I \subseteq \mathbb{N}$, $|I| \le |\bigcup_{n \in I} A_n|$ then there exist $x_n \in A_n$ for all n satisfying $x_a \ne x_b$ for $a \ne b$.
 - (c) If a graph G is bipartite then the chromatic index of G is equal to the maximum degree of G.
 - (d) If the chromatic number of a graph G is $k \ge 4$ then G has a vertex with degree at least k.