Ph.D. Qualifying Examination: Algebra (Feb. 2010)

Notes. Let \mathbf{C} denote the field of complex numbers, \mathbf{R} the field of real numbers, \mathbf{Q} the field of national numbers, \mathbf{Z} the ring of integers, $\operatorname{Aut}(H)$ the automorphism group of the group H and $Z(G)$ the center of the group G.
[1] Let G be a finite group and let p be the smallest prime dividing the order of G. Prove:
(a) $\operatorname{Aut}(H) \cong \mathbf{Z} / p \mathbf{Z} \backslash\{0\}$ if H is a subgroup of G of order p. (10 points)
(b) If H is a normal subgroup of order p, then $H \subseteq Z(G)$. (10 points)
[2] Let $i=\sqrt{-1}$ in \mathbf{C}, the field of complex numbers, \mathbf{R} the field of real numbers, and let x be an indeterminate.
(a) Show that the three additive groups $\mathbf{R} \oplus \mathbf{R}, \mathbf{R}[i]$, and $\mathbf{R}[x] /\left(x^{2}\right)$ are all isomorphic to each other. (10 points)
(b) Show that no two of the three rings $\mathbf{R} \oplus \mathbf{R}, \mathbf{R}[i]$, and $\mathbf{R}[x] /\left(x^{2}\right)$ are isomorphic to each other. (10 points)
[3] Let V be a vector space over \mathbf{R} with $\operatorname{dim}_{\mathbf{R}} V \geq 2$. Suppose that $f: V \rightarrow V$ is a nonzero linear transformation satisfying $f(v) \in \mathbf{R} v$ for all $v \in V$. Prove that there exists $\beta \in \mathbf{R}$ such that $f(v)=\beta v$ for all $v \in V$. (10 points)
[4] Let $a, b \in \mathrm{M}_{7}(\mathbf{R})$ be such that $a b^{19}=0$. Prove that $a b^{7}=0$. (10 points)
[5] Let $f(x) \in \mathbf{Q}[x]$ be of degree $n>1$. Suppose that $m>1$ is a square-free positive integer and $a, b \in \mathbf{Q}$. Prove that if $f(a+b \sqrt{m})=0$ then $f(a-b \sqrt{m})=0 .(10$ points)
[6] Let $A \in \operatorname{End}_{F}(V)$, where V is a finite-dimensional vector space over the field F. If $q(x) \in F[x]$ is irreducible and if $q(A)$ is not one-to-one, prove that $q(x)$ divides the minimal polynomial of A. (10 points)
[7] (a) Prove that $[\mathbf{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5}): \mathbf{Q}]=8$. (10 points)
(b) Find the Galois group of $\mathbf{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$ over \mathbf{Q}. (10 points)

