Ph.D. Qualifying Examination: Algebra (Feb. 2010)

Notes. Let C denote the field of complex numbers, R the field of real numbers, Q the field of national numbers, Z the ring of integers, Aut(H) the automorphism group of the group H and Z(G) the center of the group G.

- [1] Let G be a finite group and let p be the smallest prime dividing the order of G. Prove:
 - (a) Aut $(H) \cong \mathbb{Z}/p\mathbb{Z} \setminus \{0\}$ if H is a subgroup of G of order p. (10 points)
 - (b) If H is a normal subgroup of order p, then $H \subseteq Z(G)$. (10 points)
- [2] Let $i = \sqrt{-1}$ in **C**, the field of complex numbers, **R** the field of real numbers, and let x be an indeterminate.

(a) Show that the three additive groups $\mathbf{R} \oplus \mathbf{R}$, $\mathbf{R}[i]$, and $\mathbf{R}[x]/(x^2)$ are all isomorphic to each other. (10 points)

(b) Show that no two of the three rings $\mathbf{R} \oplus \mathbf{R}$, $\mathbf{R}[i]$, and $\mathbf{R}[x]/(x^2)$ are isomorphic to each other. (10 points)

- [3] Let V be a vector space over **R** with dim $_{\mathbf{R}} V \ge 2$. Suppose that $f: V \to V$ is a nonzero linear transformation satisfying $f(v) \in \mathbf{R} v$ for all $v \in V$. Prove that there exists $\beta \in \mathbf{R}$ such that $f(v) = \beta v$ for all $v \in V$. (10 points)
- [4] Let $a, b \in M_7(\mathbf{R})$ be such that $ab^{19} = 0$. Prove that $ab^7 = 0$. (10 points)
- [5] Let $f(x) \in \mathbf{Q}[x]$ be of degree n > 1. Suppose that m > 1 is a square-free positive integer and $a, b \in \mathbf{Q}$. Prove that if $f(a + b\sqrt{m}) = 0$ then $f(a b\sqrt{m}) = 0$. (10 points)
- [6] Let $A \in \operatorname{End}_F(V)$, where V is a finite-dimensional vector space over the field F. If $q(x) \in F[x]$ is irreducible and if q(A) is not one-to-one, prove that q(x) divides the minimal polynomial of A. (10 points)
- [7] (a) Prove that $\left[\mathbf{Q}(\sqrt{2},\sqrt{3},\sqrt{5}):\mathbf{Q}\right] = 8.$ (10 points)
 - (b) Find the Galois group of $\mathbf{Q}(\sqrt{2},\sqrt{3},\sqrt{5})$ over \mathbf{Q} . (10 points)