國立中山大學 105 學年度寒假轉學考招生考試試題

科目名稱:線性代數【應數系二年級】 ※本科目依簡章規定「不可以」使用計算機

題號:20402 共1頁第1頁

1. [10%] Compute the determinant of the matrix

$$\left(\begin{array}{ccccc}
-2 & 5 & -1 & 3 \\
1 & -9 & 13 & 7 \\
3 & -1 & 5 & -5 \\
2 & 8 & -7 & -10
\end{array}\right)$$

and determine whether it is invertible.

- 2. [15%]Prove that there is a linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^3$ satisfying T(1,3) = (1,2,3) and T(-2,1) = (4,5,6). Is T unique? What is T(3,4)? Verify your answers.
- 3. [15%] Find the Jordan canonical form of the matrix

$$\left(\begin{array}{ccc} 1 & 2 & 0 \\ 0 & 2 & 0 \\ -2 & -2 & -1 \end{array}\right).$$

- 4. [15%] Find all values of k so that the set $\{(1, -3, 1), (3, 4, 5), (2, 1, k)\}$ of vectors in \mathbb{R}^3 is linearly dependent.
- 5. [15%] Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation satisfying $T^2 = I$, the identity transformation. Find the range and kernel of T.
- 6. [30%] For any $n \in \mathbb{N} \cup \{0\}$, let $P_n(\mathbb{R})$ be the set of polynomials over \mathbb{R} with degrees less or equal to n. Define a transformation $T: P_2(\mathbb{R}) \to P_3(\mathbb{R})$ by

$$T(p(x)) = xp'(x) + \int_0^x p(t) dt,$$

where ' is the first order derivative.

- Show that P₃(ℝ) is a vector space.
- (2) Prove that T is linear.
- (3) Find the matrix representing T with respect to the ordered basis $\{1, x, x^2\}$ and $\{1, x, x^2, x^3\}$ for $P_2(\mathbb{R})$ and $P_3(\mathbb{R})$, respectively.