國立中山大學 106 學年度寒假轉學考招生考試試題

科目名稱:線性代數【應數系二年級】 ※本科目依簡章規定「不可以」使用計算機

題號:20402 共1頁第1頁

1. [10%] Find all values of k for which the set $\{(1,3,1),(-2,4,5),(1,1,k)\}$ of vectors in \mathbb{R}^3 is linearly dependent.

2. [15%] Let a_1, \ldots, a_n be numbers in the complex field \mathbb{C} . Determine whether the matrix

$$\begin{pmatrix}
0 & a_1 & 0 & \cdots & 0 \\
0 & 0 & a_2 & & 0 \\
\vdots & 0 & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & a_{n-1} \\
a_n & 0 & 0 & \cdots & 0
\end{pmatrix}$$

with 0's on the diagonal entries and a_1, \ldots, a_{n-1} on the upper off-diagonal entries is invertible. If the matrix is invertible, find its inverse.

3. [15%] Show that the set $\mathbb{C}[X]$ of all polynomial over \mathbb{C} is a vector space. Find the dimension of the subspace of $\mathbb{C}[X]$ spanned by the set

$$\{1, (X-1), (X-2)^2, \dots, (X-n)^n\},\$$

and verify your assertion.

4. [15%] Find the Jordan canonical form of the matrix

$$\left(\begin{array}{ccc}
3 & 0 & 8 \\
3 & -1 & 6 \\
-2 & 0 & -5
\end{array}\right).$$

5. [15%] Denote by $\operatorname{Tr}_n: M_n(\mathbb{C}) \to \mathbb{C}$ the trace map on the space of $n \times n$ matrices over \mathbb{C} , i.e.,

$$\operatorname{Tr}_n A = \sum_{i=1}^n A_{ii}$$

for any $A = (A_{ij}) \in M_n(\mathbb{C})$. Show that

$$\operatorname{Tr}_n(AB) = \operatorname{Tr}_m(BA)$$

for any matrices $A \in M_{n \times m}(\mathbb{C})$ and $B \in M_{m \times n}(\mathbb{C})$.

6. [30%] For any $n \in \mathbb{N}$, denote by $P_n(\mathbb{R})$ the set of polynomials over \mathbb{R} with degrees less or equal to n. Define a map $T: P_2(\mathbb{R}) \to P_3(\mathbb{R})$ by

$$T(p(x)) = (x+1)p'(x) + \int_{-x}^{x} p(t) dt,$$

where ' is the first-order derivative.

- (1) Prove that T is linear.
- (2) Find the matrix representation of T with respect to the ordered basis $\{1, x, x^2\}$ and $\{1, x, x^2, x^3\}$ for $P_2(\mathbb{R})$ and $P_3(\mathbb{R})$, respectively.