國立中山大學 106 學年度寒假轉學考招生考試試題

科目名稱:高等微積分【應數系三年級】 ※本科目依簡章規定「不可以」使用計算機

題號:20403 共1頁第1頁

1. [15%] Let $\{a_n\}$ be a sequence of complex numbers satisfying

$$|a_{n+1} - a_n| \le 3^{-n}$$

for all n. Determine whether the sequence $\{a_n\}$ has a limit, and verify your assertion.

2. [15%] State the definition of the closure of a subset of \mathbb{R} , and use the definition that you provide to find the closure of the set

$$\{n^{-1}:n\in\mathbb{N}\}.$$

Verify your assertion.

- 3. [15%] Use the ϵ - δ argument to prove that the function $x \mapsto 1/x^2$ is continuous on $(0, \infty)$. Is the function also uniformly continuous on $(0, \infty)$? Verify your assertion.
- 4. [15%] Show that any function $f: \mathbb{R} \to \mathbb{R}$ satisfying the inequality

$$|f(x) - f(y)| \le |x - y|^2$$

for any real x and y is a constant function.

5. [15%] Find the Taylor series expansion for the function

$$x\mapsto \frac{1}{1+x}$$

at 2, and find the convergence of interval of the Taylor series.

6. [15%] Let $f_n:[1,2]\to\mathbb{R}$ be defined by

$$f_n(x) = \frac{x}{(1+x)^n}.$$

Show that

$$\sum_{n=1}^{\infty} f_n(x)$$

converges in [1,2]. Is the convergence uniform? Verify your assertion.

7. [10%] Find the limit $n^{1/n}$ as $n \to \infty$.